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Introduction  
       The original goal of this proposed work was to develop engineered nanostructures 
that could have extremely hard properties but yet adequate toughness approaching 20 
MPa-m1/2 to prevent fracture. In the first year of this work, understanding of both the 
necessary and limiting factors have been developed. Progress towards both high hardness 
and high toughness are reported along with appropriate metrics of publications and 
presentations. 
 
Optimal Strength and Limitations 
 We now have an understanding of those parameters which control hardness and 
strength of nanoparticles and nanopillars made of nominally brittle oxides or 
semiconductors such as sapphire and silicon. These parameters are basically: 
 
 • size – smaller is stronger; 
 • dislocation nucleation – plasticity availability; 
 • confinement - plasticity is necessary but not sufficient; 
 • residual stress – states of stress could potentially represent a paradigm shift. 
 
The overall effect is illustrated in Figure 1 for silicon single crystal nanospheres. A 
typical defect-free sphere made by the hypersonic plasma particle deposition technique is 
shown in Figure 1 (a).  As evaluated by a combination of atomic force microscopy and  
 

 
 
Fig. 1: A typical but larger than most spherical silicon crystal nanoparticles of this study 
is shown. (a) Electron microscopy image showing no defects but thickness fringe 
diffraction contrast; (b) Strength (mean contact pressure) as a function of sphere 
diameter. 
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in-situ transmission electron microscopy using either Triboindenters or PicoIndenters, the 
“smaller is stronger” feature has been found. . A decade increase in the contact stress 
(hardness) of these spheres is illustrated in Figure 1 (b). Current work is involved in 
demonstrating whether the plasticity is only due to dislocations or whether some 
pressure-induced phase transformation might also be involved. Indirectly, all current 
evidence points to dislocation nucleation. Regarding dislocation nucleation, a theoretical 
understanding leading to a modification of Christian’s nucleation model (1) is given by  
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Here  / is the shear modulus to critical resolved shear stress for dislocation nucleation, 
kT is a surface stress concentration factor, b is the Burgers vector and  is a dislocation 
core energy parameter. Given these, one can determine the normalized activation volume, 
V*/b3 for dislocation nucleation. For two reasons then, the size and surface condition 
must be appropriate for dislocation nucleation to achieve plasticity prior to brittle fracture 
in relative dislocation free small volumes. First, the size needs to be small enough to 
eliminate critical defect sizes for fracture. However, there must be nucleation sites, 
possibly with sufficiently high stress concentrations to nucleate dislocations but not 
fracture. Once dislocations nucleate, the flow stresses may increase further as long as the 
plasticity is constrained but not too immobilized. The confinement issue due to 
nanocrystalline grain sizes, dislocation substructures or oxide films as barriers to motion 
is still under investigation. Finally, a new consideration is the role of residual stresses 
where novel experiments of nanocrystalline SiC surrounding silicon nanopillars has 
demonstrated that substantial internal stresses can be developed. For example, we have   
demonstrated that Si/SiC, with a thermal expansion difference of  = 2x10-6/C  can 
produce an extrusion of Si out of the core/shell nanocomposite during rapid thermal 
annealing (RTA). These four parameters should give considerable flexibility in 
optimizing possible strengths available. 
 
Optimal Toughness and Limitations 
 Regarding fracture toughness, some progress has been achievable in monolithic 
materials, again single crystal silicon, but also coupled as a nanocomposite to SiC. For 
example, composite pillars of SiC/Si have been evaluated with cube-corner indenters to 
nucleate cracks. Such pillars shown in Figure 2 were then focused ion beam (FIB) cut to  
 



 
 
Figure 2: Silicon nanopillars coated with nanoparticle/CVD nanocomposites of SiC. 
These were initially grown by vapor-liquid-solid technique and coated by the HPPD  
process.  
 
illustrate their cross-sections. As given in Figure 3(a), the  indentation-induced cracks 
were utilized to measure the fracture toughnesses as indicated in Figure 3(b). 
 

 
 
Figure 3: Different diameter nanocomposite nanopillars indented in Figure 3(a) give the 
results with others demonstrating the size effect of nanopillars on fracture toughness in 
Figure 3(b). 
 
Here it is seen that the toughness increased brom bulk silicon (KIc= 0.7 MPa-m1/2) for 
large diameter pillars, to about 2.5 MPa-m1/2 for pillars about half the size of the larger 



ones. As we had originally determined that the brittle-ductile transition at room 
temperature for silicon nanopillars was closer to 300 nm, subsequent evaluations will be 
produced for smaller nanopillars. 
 
 
Program Metrics 
 
 Over the first year period of September 8 to October 8, 2009, the following 
publications and presentations associated with the grant resulted.  
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